
### 2. (a) nuclear fusion



#### (b) nuclear fission



### Applying Knowledge Nuclear fission and fusion reactions Page 142

- **1.** 3 <sup>1</sup><sub>0</sub>n, Fission <sup>239</sup><sub>94</sub> Pu
- **2.** 2 <sup>2</sup><sub>1</sub>H, Fusion
- **3.** <sup>80</sup><sub>32</sub>Ge, Fission
- **4.**  $_{0}^{1}$ n, Fusion
- **5.** <sup>235</sup><sub>92</sub> U, Fission
- **6.**  $^{1}_{0}$ n, Fusion
- **7.** <sup>113</sup><sub>46</sub> Pd, Fission
- **8.** <sup>127</sup><sub>53</sub> I, Fission
- **9.**  $3_0^1$ n, Fission
- **10.**  $^{239}_{94}$  Pu, Fission

### **Assessment**

### **Nuclear reactions**

### **Page 143**

**1.** B **2.** C **3.** B **4.** F **5.** A **6.** E **7.** D **8.** B **9.** C **10.** D **11.** C **12.** C **13.** B

### **UNIT 3 Motion**

# Chapter 8 Average velocity is the rate of change in position.

### Section 8.1 The Language of Motion

Comprehension

**Scalars versus vectors** 

### **Page 147**

- **1. (a) scalar:** a quantity that has a magnitude but not a direction
  - **(b) vector:** a quantity that has both a magnitude and a direction
  - (c) magnitude: the size of a measurement or an amount
  - (d) reference point: the point from which the change is measured

#### 2.

| Quantity      | Symbol           | SI Unit     | Scalar or Vector |
|---------------|------------------|-------------|------------------|
| time          | t                | s (seconds) | scalar           |
| time interval | $\Delta t$       | s (seconds) | scalar           |
| distance      | d                | m (metres)  | scalar           |
| position      | ₫                | m (metres)  | vector           |
| displacement  | $\Delta \vec{d}$ | m (metres)  | vector           |

- 3. (a) V (b) S (c) S (d) V
- 4. (a) positive (+)
  - (b) negative (-)
  - (c) positive (+)
  - (d) negative (-)

# Applying Knowledge Distance, position, and displacement Page 148

#### 1.

| <i>t</i> <sub>i</sub> (s) | <i>t</i> , (s) | ∆ <i>t</i> (s) | <i>d</i> <sub>i</sub> (m) | <i>d</i> <sub>f</sub> (m) | ∆ <i>d</i> (m) | Direction of<br>Motion |
|---------------------------|----------------|----------------|---------------------------|---------------------------|----------------|------------------------|
| 6.0                       | 7.5            | 1.5            | +18.4                     | +22.6                     | +4.2           | right                  |
| 5.7                       | 8.5            | 2.8            | +24.3                     | +30.1                     | +5.8           | up                     |
| 20.2                      | 38.4           | 18.2           | +39.1                     | +24.8                     | -14.3          | south                  |
| 12.4                      | 18.8           | 6.4            | +54.8                     | +46.2                     | -8.6           | west                   |

- 2. (a) 12 m
  - **(b)** 0 m
- 3. (a)

| Time  | Position  |
|-------|-----------|
| 0 min | 0 m       |
| 1 min | 180 m [E] |
| 2 min | 40 m [E]  |
| 3 min | 140 m [E] |

20

| Time Interval | Distance Travelled | Displacement |
|---------------|--------------------|--------------|
| 0 min–1 min   | 180 m              | 180 m [E]    |
| 1 min–2 min   | 140 m              | 140 [W]      |
| 2 min-3 min   | 100 m              | 100 m [E]    |

- **(b)** 420 m
- (c) 140 m [E]

### Comprehension

## Positive, negative, and zero slopes Page 150

- 1. Graph B
- 2. Graph A
- 3. Graph C
- 4. Graphs A, B and C
- 5. Graph B
- 6. Graph C
- 7. Graph A

# Analyzing Information Uniform motion Page 151

- 1. (a) non-uniform motion
  - (b) uniform motion
  - (c) non-uniform motion

2.

| Time Interval | Slope of Line | Description of Motion                                                |
|---------------|---------------|----------------------------------------------------------------------|
| 0 s-10 s      | positive      | The object is moving to the right of the origin with uniform motion. |
| 10 s–15 s     | zero          | The object is at rest.                                               |
| 15 s–30 s     | negative      | The object is moving back toward the origin with uniform motion.     |
| 30 s-40 s     | negative      | The object is moving to the left of the origin with uniform motion.  |
| 40 s–55 s     | positive      | The object is moving back toward the origin with uniform motion.     |

- **3.** 10 s–15 s
- **4.** 15 s-30 s
- **5.** 0–2 s and 7–12 s
- 6. pacing backward away from the bus stop
- 7. pacing forward toward the bus stop
- 8. 2 m in front of the bus stop
- 9. -8m, that is 8 m backward
- 10. 20 m
- **11.** 0 m

#### **Assessment**

## The language of motion Page 153

1. E 2. D 3. B 4. G 5. F 6. A 7. C 8. A 9. B 10. D 11. D

### Section 8.2 Applying Knowledge

# Applying Knowledge Calculating average velocity

Page 156

1. (a) 
$$U_{av} = \frac{\Delta \vec{d}}{\Delta t}$$

**(b)** 
$$\Delta \vec{d} = \vec{v}_{av} \Delta t$$

(c) 
$$\Delta t = \frac{\Delta \vec{d}}{\vec{v}_{av}}$$

2

| Displacement | Time   | Average<br>Velocity | Formula Used and Calculation Shown                                                     |
|--------------|--------|---------------------|----------------------------------------------------------------------------------------|
| 15.6 m       | 3 s    | 5.2 m/s             | $\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t} = \frac{15.6}{3} = 5.2 \text{ m/s}$    |
| 357.5 km     | 6.5 h  | 55 km/h             | $\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t} = \frac{357.5}{6.5} = 55 \text{ km/h}$ |
| 22.6 m       | 4 s    | 5.65 m/s            | $\Delta t = \frac{\Delta \vec{d}}{\vec{V}_{av}} = \frac{22.6}{5.65} = 4 \text{ s}$     |
| 243.75 km    | 3.25 h | 75 km/h             | $\Delta \vec{d} = \vec{v}_{av} \Delta t = 75 \times 3.25 = 243.75 \text{ km}$          |
| 12.6 m       | 3.15 s | 4 m/s               | $\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t} = \frac{12.6}{3.15} = 4 \text{ m/s}$   |
| 24 km        | 0.75 h | 32 km/h             | $\Delta t = \frac{\Delta \vec{d}}{\vec{v}_{av}} = \frac{24}{32} = 0.75 \text{ h}$      |
| 480 m        | 8 s    | 60 m/s              | $\Delta \vec{d} = \vec{v}_{av} \Delta t = 60 \times 8 = 480 \text{ m}$                 |

- **3. (a)** 150 s
  - **(b)** 70 s
  - (c) 255 m [E]
  - **(d)** 14 s
  - (e) 0.375 km/min
  - (f) 800 000 a (years)
  - (g) 0.65 km, or 650 m

### Applying Knowledge Slopes of position-time graphs Page 157

- 1. average velocity
- 2. uniform motion; constant velocity
- **3.** Slope is the change in the vertical distance divided by the change in the horizontal distance.
- **4.** slope =  $\frac{\text{rise}}{\text{run}}$
- 5.

| Line | Rise | Run | Slope Calculation | Slope    |
|------|------|-----|-------------------|----------|
| Α    | 4    | 15  | 4 ÷ 15            | 0.27 m/s |
| В    | 0    | 20  | 0 ÷ 20            | 0 m/s    |
| С    | 8    | 5   | 8 ÷ 5             | 1.6 m/s  |
| D    | -6   | 15  | -6 ÷ 15           | -0.4 m/s |

### **Analyzing Information**

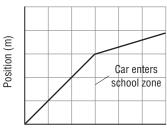
## Analyzing position-time graphs Page 158

### 1. (a)

| Time Interval | Displacement | Average Velocity |
|---------------|--------------|------------------|
| 0 s-2 s       | 0 m          | 0 m/s            |
| 2 s–5 s       | –3 m         | −1 m/s           |
| 5 s-7s        | + 5 m        | + 2.5 m/s        |
| 7 s–12 s      | 0 m          | 0 m/s            |
| 12 s–14 s     | –8 m         | −4 m/s           |
| 14 s–16 s     | + 4 m        | + 2 m/s          |
| 16 s–18 s     | 0 m          | 0 m/s            |
| 18 s–19 s     | + 2 m        | + 2 m/s          |
| 19 s–20 s     | 0 m          | 0 m/s            |

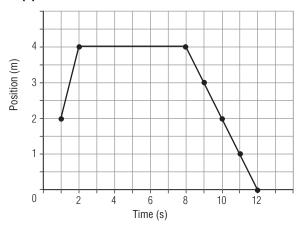
- (b) at 14 seconds
- (c) 0 m
- 2. (a) C
  - (b) E
  - (c) B
  - (d) D
  - (e) F
  - (f) A
- **3. (a)** The *y*-intercept represents the position at which the runner starts.
  - **(b)** No. Runner B starts out farther ahead than Runner A.
  - (c) Runner B is running faster at 2 s because Runner B has a steeper slope than Runner A.
  - (d) At 5 s, both runners are at the same position.
  - (e) Runner A is ahead at 10 s.

### **Extension Activity**

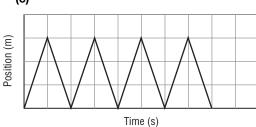

## Constructing and interpreting position-time graphs

### **Page 160**

22


- **1. (a)** Graph should have a negative slope crossing the *x*-axis at 5 s.
  - (b) 3 seconds
  - (c) 100 m [E]
  - (d) -12.5 m [W]
  - **(e)** -25 m/s
  - **(f)** The car is moving westward toward the origin with constant velocity.

### 2. (a)




Time (s)

#### (b)







#### **Assessment**

### Average velocity

### **Page 162**

**1.** B **2.** C **3.** A **4.** D **5.** A **6.** A **7.** B **8.** D **9.** C **10.** B **11.** C **12.** C **13.** D **14.** A

# Chapter 9 Acceleration is the rate of change in velocity.

### **Section 9.1 Describing Acceleration**

# Cloze Activity Velocity and acceleration Page 166

- 1. vector, speed
- 2. positive
- 3. negative